ch 1
Exercise

1. Find the distance bet - the following Points:

Pu
(i) $(5 . \overrightarrow{1})$ and $(6,0) \vec{B}$
(ii) $(2,8) \rightarrow c / / /(2,-3) \longrightarrow 0$

Ans:
for two points $P=\left(x_{1}, y_{1}\right), Q=\left(x_{2}, y_{2}\right)$, the distance bet them is:

$$
P Q=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}
$$

(i) $A B=\sqrt{(5-6)^{2}+(1-0)^{2}} \Rightarrow A B=\sqrt{2}$
(ii) $C D=\sqrt{(2-2)^{2}+(8+3)^{2}} \Rightarrow C D=11$
(iii) $E F=\sqrt{(1-3)^{2}+(2-4)^{2}} \Rightarrow E F=2 \sqrt{2}$
2. Find the lengthes of the sides of the triangle whose vertices are $(5,1),(-3,7)$

Pu and $(8,5)$ and Prove that one of the angles is a right angle.
Ans: let $A=(5,1), B=(-3,7)$ and $C=(8,5)$

$$
\begin{aligned}
& A B=\sqrt{(5+3)^{2}+(1-7)^{2}} \Rightarrow A B=10 \Rightarrow(A B)^{2}=100 \\
& B C=\sqrt{(-3-8)^{2}+(7-5)^{2}} \Rightarrow B C=5 \sqrt{5} \Rightarrow(B C)^{2}=125 \\
& C A=\sqrt{(5-8)^{2}+(1-5)^{2}} \Rightarrow C A=5 \Rightarrow(C A)^{2}=25 \\
& \because(A B)^{2}+(C A)^{2}=125 \Rightarrow(B C)^{2}=125 \\
& \because(B C)^{2}=(A B)^{2}+(C A)^{2} \Rightarrow \text { "Pythagorean theory" } \\
& \text { Then }
\end{aligned}
$$

The Triangle $B A C$ has a right angle at $A=(5,1)$
by / Mohammed Emad
3. Prove that the triangle whose vertices are $A=(-2,1)$. $B=(-1,4), C=(0,3)$ is a right angled triangle.
Ans:

$$
\begin{aligned}
& \overline{A B}=\sqrt{(-2+1)^{2}+(1-4)^{2}} \Rightarrow A B=\sqrt{10} \quad(A B)^{2}=10 \\
& B C=\sqrt{(-1-0)^{2}+(4-3)^{2}} \Rightarrow B C=\sqrt{2} \quad(B C)^{2}=2 \\
& C A=\sqrt{(-2-0)^{2}+(1-3)^{2}} \Rightarrow C A=2 \sqrt{2} \quad(C A)^{2}=8 \\
& \because(C A)^{2}+(B C)^{2}=10,(A B)^{2}=10, \text { i.e. } \\
& (A B)^{2}=(C A)^{2}+(B C)^{2} \rightarrow \text { Pythagorean theory. }
\end{aligned}
$$

\therefore The triangle $A B C$ is right angled at C
4. Show that the Points $(a, a),(-a,-2)$ and $(-a \sqrt{3}, a \sqrt{3})$ are vertices of equilateral triangle.
Ans:

$$
\begin{aligned}
& A B=\sqrt{(2+2)^{2}+(a+2)^{2}} \Rightarrow A B=2 \sqrt{2} 2 \\
& B C=\sqrt{(-2+2 \sqrt{3})^{2}+(-2-2 \sqrt{3})^{2}}=2 \sqrt{2} 2 \\
& C A=\sqrt{(2+2 \sqrt{3})^{2}+(2-2 \sqrt{3})^{2}}=2 \sqrt{2} 2
\end{aligned}
$$

$\because A B=B C=C A \Rightarrow A B C$ is equilateral triangle.
pu
5. Show that the four points $\left.\begin{array}{rl}(1,0), & (6,1), \\ \qquad A,(5,6)\end{array}\right)$ and $(0,5)$ is a square.

Ans: $\quad A \quad \angle B \quad L_{\square C} \quad \longrightarrow D$

$$
\begin{aligned}
& A B=\sqrt{5^{2}+1^{2}}=\sqrt{26} \\
& B C=\sqrt{1^{2}+5^{2}}=\sqrt{26} \\
& C D=\sqrt{5^{2}+1^{2}}=\sqrt{26} \quad A C=\sqrt{(1-5)^{2}+6^{2}} \Rightarrow A C=2 \sqrt{13} \\
& D A=\sqrt{1^{2}+5^{2}}=\sqrt{26} \\
& \because A B=B C=C B=D A=\sqrt{26} \quad, A C=B D=2 \sqrt{13}, \text { Then }
\end{aligned}
$$

$A B C D$ is a square.
 -
11. In what ratio does the point $(-1,-1)$ device the join of $(-5,-3),(5,2)$?

Ans: for internally devision, we have:

$$
-1=\frac{5 m-5 n}{m+n} \&-1=\frac{2 m-3 n}{m+n}
$$

Then

$$
\begin{aligned}
5 m-5 n & =2 m-3 n \Rightarrow 3 m=2 n \\
\therefore m: n & =2: 3
\end{aligned}
$$

12. Find the areas of the triangle of the following Vertices:
i. $(0,0),(12,0)$ and $(0,5)$. ii. $(-2,3),(4,3)$ and $(1,1)$.

Ans:
The area of triangle $=\frac{1}{2}\left|\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right|$, fath/ MOAGMMMEd EMMA
i. $A=\frac{1}{2}\left|\begin{array}{ccc}0 & 0 & 1 \\ 12 & 0 & 1 \\ 0 & 5 & 1\end{array}\right|=\frac{1}{2}[1(60)]=30$ sq. unit
ii. $A=\frac{1}{2}\left|\begin{array}{ccc}-2 & 3 & 1 \\ 4 & 3 & 1 \\ 1 & 1 & 1\end{array}\right|=\frac{1}{2}|[1+5+6]|=6$ sq. Unit
13. Find the area of the quadrilateral whose vertices taken order are

$$
A=(1,2), B=(6,2), C=(5,3) \text { and } D=(3,4)
$$

Ans:
The area of $A B C D=$ area of $\triangle A C D+$ area of $\triangle A B C$ and
area of $\left.\triangle A B C=\frac{1}{2}| | \begin{array}{lll}1 & 2 & 1 \\ 6 & 2 & 1 \\ 5 & 3 & 1\end{array}\left|1=\frac{1}{2}\right|[8+7+(-10)] \right\rvert\,=\frac{5}{2}$

area of $\left.\triangle A C D=\frac{1}{2}| | \begin{array}{lll}1 & 2 & 1 \\ 5 & 3 & 1 \\ 3 & 4 & 1\end{array}\left|1=\frac{1}{2}\right|[11+2+(-7)] \right\rvert\,=3$

14. for $A=(3,1), B=(7,-3), C=(8,-1), D=(19,-3)$ Prove that area of $\triangle A B C$ and of $\triangle A D C$ are equal in magnitude but opposite in sign.

Ans:
area of $A B C=\frac{1}{2}\left|\begin{array}{ccc}3 & 1 & 1 \\ 7 & -3 & 1 \\ 8 & -1 & 1\end{array}\right|=\frac{1}{2}[-7+24-(-3-8)+(-9-7)]=6$ sq. unit
area of $A D C=\frac{1}{2}\left|\begin{array}{ccc}3 & 1 & 1 \\ 19 & -3 & 1 \\ 8 & -1 & 1\end{array}\right|=\frac{1}{2}[-19+24-(-3-8)+(-9-19)]=-6$ sq. Unit
Then the area of $\triangle A B C$ and $\triangle A D C$ are equal in magnitude and opposite in sign.
15. Find the coordinates of the middle points of the sides of the triangle whose

Pu
vertices are $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$ and prove that the area of the triangle formed by joining were points is one-fourth of that of the original triangle.
Ans:

$$
\begin{aligned}
& P_{1}=\left(\frac{x_{1}+x_{3}}{2}, \frac{y_{1}+y_{3}}{2}\right) \text {, } \\
& P_{2}=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right), \\
& P_{3}=\left(\frac{x_{2}+x_{3}}{2}, \frac{y_{2}+y_{3}}{2}\right) \\
& \text { ard of } \triangle A B C=\frac{1}{2}\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|=\frac{1}{2}\left[x_{2} y_{3}-x_{3} y_{2}-x_{1} y_{3}+x_{3} y_{1}+x_{1} y_{2}-x_{2} y_{1}\right] \\
& \text { area of } \triangle P_{1} P_{2} P_{3}=\frac{1}{2}\left|\begin{array}{lll}
\frac{x_{1}+x_{3}}{2} & \frac{y_{1}+y_{3}}{2} & 1 \\
\frac{x_{1}+x_{2}}{2} & \frac{y_{1}+y_{2}}{2} & 1 \\
\frac{x_{2}+x_{3}}{2} & \frac{y_{2}+y_{3}}{2} & 1
\end{array}\right| \text { My AMACMMLA EMAC } \\
& =\frac{1}{2}\left[\frac { 1 } { 4 } \left[\left(x_{1}+x_{2}\right)\left(y_{2}+y_{3}\right)-\left(x_{2}+x_{3}\right)\left(y_{1}+y_{2}\right)-\frac{1}{4}\left[\left(x_{1}+x_{3}\right)\left(y_{2}+y_{3}\right)-\left(x_{2}+x_{3}\right)\left(y_{1}+y_{3}\right)\right]\right.\right. \\
& \left.+\frac{1}{4}\left[\left(x_{1}+x_{3}\right)\left(y_{1}+y_{2}\right)-\left(x_{1}+x_{2}\right)\left(y_{1}+y_{3}\right)\right]\right] \\
& =\frac{1}{2} \cdot \frac{1}{4}\left[\left(x_{2}-x_{3}\right)\left(y_{2}+y_{3}\right)+\left(x_{1}-x_{2}\right)\left(y_{1}+y_{2}\right)+\left(x_{3}-x_{1}\right)\left(y_{1}+y_{3}\right)\right] 8 \\
& =\frac{1}{4} \cdot \frac{1}{2}\left[x_{2} y_{3}-x_{3} y_{2}-x_{1} y_{3}+x_{3} y_{1}+x_{1} y_{2}-x_{2} y_{1}\right] \text {. Then } \\
& \text { area of } \triangle P_{1} P_{2} P_{3}=\frac{1}{4} \text { area of } \triangle A B C
\end{aligned}
$$

16. Show that the Points $(0,4),(3,2),(6,0)$ are calinear.

Ans:

$$
\begin{aligned}
& \bar{D}=\left|\begin{array}{lll}
0 & 4 & 1 \\
3 & 2 & 1 \\
6 & 0 & 1
\end{array}\right|=(3 * 0-12)-(0-24)+(0-12)=-12+24-12=0 \\
& \because D=\left|\begin{array}{lll}
0 & 4 & 1 \\
3 & 2 & 1 \\
6 & 0 & 1
\end{array}\right|=0 \text {, then }(0,4),(3,2) \&(6,0) \text { are Glinear. }
\end{aligned}
$$

17. Find λ for colinear foints $(0, \lambda),(-2,1),(-3,-2)$.

Ans:
6y / Mohammed Emad

$$
\begin{aligned}
& \left|\begin{array}{ccc}
0 & \lambda & 1 \\
-2 & 1 & 1 \\
-3 & -2 & 1
\end{array}\right|=0 \Rightarrow 7 \quad 3 \lambda+2 \lambda=0 \Rightarrow \\
& 4+3-(0+3 \lambda)+(0+2 \lambda)=0 \Rightarrow 7-3 \lambda+2 \lambda=0 \Rightarrow \lambda=7
\end{aligned}
$$

6y / Mohammed Emad

Exercise (2) ch .s $\simeq 1 \mathrm{cil}=10$

1. Find eq. n of the line of slope -1 and passes through $(4,1)$.

Ans:

$$
\begin{aligned}
& \therefore y-y_{1}=m\left(x-x_{1}\right) \Rightarrow y-1=-1(x-4) \\
& \therefore y+x-5=0
\end{aligned}
$$

2. Find eq. 1 of the line passes through $(3,-1)$ and makes equal intercepts on the axes.
Ans.

$$
\begin{aligned}
& \text { slope }=\tan \alpha=\tan (135)=-1 \text {, Then } \\
& \qquad y_{+}=-1(x-3) \Rightarrow y+x-2=0
\end{aligned}
$$

(or) The er. I of line that intersect a from x-axis and b from y-axis is

$$
\begin{aligned}
& b \text { from } y-2 \times 2 \text { is } \\
& \frac{x}{a}+\frac{y}{b}=1 \text { but } a=b \text { (Given), Then }
\end{aligned}
$$

$\frac{x+y}{2}=1 \Rightarrow x+y=2$ is the er. Δ of the line
sub. with $(3,-1)$ in it, Then $2=3-1=2$, hence
$y+x-2=0$ is the eq. n of the Mine. Gy/Moframmed Emad
3. Find eq. Δ of the line that passes through $(-4,2)$ \& $(1,-3)$.

Ans:

$$
\begin{aligned}
& \therefore \frac{y-y_{1}}{x-x_{1}}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \Rightarrow \frac{y-2}{x+4}=\frac{-3-2}{1+4} \Rightarrow y-2=-x-4 \\
& \therefore y+x+2=0
\end{aligned}
$$

$\sqrt{4}$. Find el. 1 of the line that intercelt 3 on x-axis and 4 on y-axis.
Ans:

$$
\begin{aligned}
& \quad \frac{x}{2}+\frac{y}{b}=1 \Rightarrow \frac{x}{3}+\frac{y}{4}=1 * \frac{12}{12} \\
& \therefore \quad 4 x+3 y-12=0 \Rightarrow 3 y+4 x-12=0
\end{aligned}
$$

5. Prove that the line through the Points $(4,3)$ and $(2,5)$ cuts off equal intercepts on the axes.
Ans.
let the eq.n of the line is $\frac{x}{2}+\frac{y}{b}=1$
we want to prove that $a=b$, Then wi will sub. with $(4,3)$ and $(2,5)$ to get two eq..ns which we will solve to get 2 and b, ie.

$$
\begin{aligned}
& \frac{4}{2}+\frac{3}{b}=1 \text { \& } \frac{2}{2}+\frac{5}{b}=1 \text {. put } A=\frac{1}{2} \text { and } B=\frac{1}{b} \\
& \therefore \quad 4 A+3 B=1 \underset{\rightarrow 1}{\Rightarrow 1} \quad 2 A+5 B=1 \rightarrow 2 \\
& \text { (1) }=2 \Rightarrow 4 A+3 B=2 A+5 B \Rightarrow 2 A=2 B \Rightarrow A=B \Rightarrow \frac{1}{2}=\frac{1}{b} \\
& \therefore 2=b \\
& \text { by / Mohamed mad }
\end{aligned}
$$

6. Find the eq. n of the line passes through $(3,6)$ and makes angle $\tan ^{-1} 3$ with x-axis.
Ans.

$$
\begin{aligned}
& \alpha=\tan ^{-1} 3 \Rightarrow \text { slope }=\tan \alpha=3 . \\
& y-y_{1}=m\left(x-x_{1}\right) \Rightarrow y-6=3(x-3) \Rightarrow y-3 x+3=0
\end{aligned}
$$

7. Find ex. n of line joining $(3,2)$ and $(-1,-5)$.

Ans.

$$
\frac{y-2}{x-3}=\frac{-7}{-4} \Rightarrow 4(y-2)=7(x-3) \Rightarrow 4 y-7 x+13=0
$$

8. Find eq. n of the nine through $(2,-1)$ and normal to $4 x-3 y=6$.

Ans.

$$
-3 y+4 x-6=0 \Rightarrow \text { has slope }=\frac{-4}{-3}=\frac{4}{3}=m_{1}
$$

for perpendicular lines $m_{1} m_{2}=-1 \Rightarrow \frac{4}{3} * m_{2}=-1 \Rightarrow m_{2}=\frac{-3}{4}$ \therefore eq. D of the line will be $y+1=\frac{-3}{4}(x-2) \Rightarrow 4 y+4=-3 x+6$

$$
\therefore 4 y+3 x-2=0
$$

9. Find the bisectors of the angle $\quad \frac{4 x-3 y-6}{\sqrt{16+9}}= \pm \frac{2 x+3 y-12}{\sqrt{4+9}}$
bet' $4 x-3 y=6 \& 2 x+3 y=12 \quad$

Ans:
$\xrightarrow{\text { Lie }}$

Exercise (3)
Ch. 1 C. sine $=$ in

1. A Point P moves so that its distances from two Points $(3,4)$ and $(5,-2)$ are equal to one another. Find the er.n of the locus of P.
Ans:

$$
A P=B P \text {, Then }
$$

$$
(x-3)^{2}+(y-4)^{2}=(x-5)^{2}+(y+2)^{2} \text {, Then }
$$

$$
x^{2}-6 x+9+y^{2}-8 y+16=x^{2}-10 x+25+y^{2}+4 y+4
$$

$$
\begin{aligned}
& -6 x+9+y^{2}-8 y+16=x^{2}-10 x+25+y^{2}+4 y+4 \\
& 4 x-12 y-4=0 \Rightarrow\{x-3 y-1=0 \rightarrow \text { locus of } P \quad B 4, A, P \text { C NAN }
\end{aligned}
$$

Liconrincing evict
2. Prove that the locus of a point which is equidistance from the Point $(a+b, b-2)$ and $(2-b ; b+2)$ is $b x=2 y$.
Ans:

$$
A P=B P \text {, Then }
$$

$$
\begin{aligned}
& (x-(a+b))^{2}+(y-(b-a))^{2}=(x-(a-b))^{2}+(y-(b+a))^{2} \\
& -2 x(a+b)+(2+b)^{2}-2 y(b-a)+(b-a)^{2}=-2 x(2-b)+(a-b)^{2}-2 y(b+a)+(b+2)^{2} \\
& 2 x(2-b-2-b)=2 y(b-a-b-2) \Rightarrow-4 b x=-42 y \Rightarrow b x=2 y
\end{aligned}
$$

P10 3. The sum of the squares of the distance of 2 moving Point from the two fixed points $(2,0)$ and $(-2,0)$ is equal to 16. Find the er.n of it's locus
Ans:

$$
\begin{aligned}
& (A P)^{2}+(B P)^{2}=16 \\
& (x+2)^{2}+(y)^{2}+(x-2)^{2}+(y)^{2}=16 \\
& 2 x^{2}+2 y^{2}+8=16 \Rightarrow\left\{x^{2}+y^{2}=4\right. \text { by/ Motadmmed EMAGd }
\end{aligned}
$$

p10 4. A point P moves so that its distance from the fixed point $(0,2)$ is equal to its distance from the x-axis. Prove that the er. I of the locus is $x^{2}=4(y-1)$
Ans: \{ylcoge $x, 0$, \rightarrow

$$
\sqrt{(x-0)^{2}+(y-2)^{2}}=y
$$

$$
x^{2}+y^{2}-4 y+4=y^{2} \Rightarrow x^{2}=4(y-1)
$$

by / Mohammed Emad
5. Find the er.n of the locus of a Point which is at a distance 3 from the point $(3,-1)$.
Ans:

$$
\begin{aligned}
& \sqrt{(x-3)^{2}+(y+1)^{2}}=3 \Rightarrow x^{2}-6 x+9+y^{2}+2 y+1=9 \\
& \therefore x^{2}+y^{2}-6 x+2 y+1=0
\end{aligned}
$$

6. A Point moves so that its distance from x-axis is half of its distance from the origin. Find the erin of its locus.
Ans:

$$
\begin{aligned}
& y=\frac{1}{2} \sqrt{x^{2}+y^{2}} \Rightarrow x^{2}+y^{2}-2 y^{2}=0 \\
& \therefore x^{2}-y^{2}=0
\end{aligned}
$$

7. Find the eq. n of the locus of 2 point whose distance from $(-1,1)$ is equal to twice its distance from the origin. by/ Moflammed Emad
Ans:

$$
\sqrt{(x+1)^{2}+(y-1)^{2}}=2 \sqrt{(x-0)^{2}+(y-0)^{2}} \Rightarrow x^{2}+2 x+1+y^{2}-2 y+1=4 x^{2}+4 y^{2}
$$

Then

$$
3 x^{2}-2 x+3 y^{2}+2 y-2=0
$$

P11 8. Given $A(2, b), B(3 a, 3 b)$ show that if $P(x, y)$ is a point such that $P A=P B$ Then $a x+b y=2\left(a^{2}+b^{2}\right)$.
Ans:

$$
P A=P B \Rightarrow(x-2)^{2}+(y-b)^{2}=(x-3 a)^{2}+(y-3 b)^{2}
$$

Then $-22 x+a^{2}-2 b y+b^{2}=-6 a x+9 a^{2}-6 b y+9 b^{2}$

$$
42 x+4 b y=8 a^{2}+8 b^{2} \Rightarrow 2 x+b y=2\left(a^{2}+b^{2}\right)
$$

P11 9. Find locus of P which moves such that its distance from $(0,3)$ is cinal to the ordinate of P.
Ans:

$$
\begin{aligned}
& \sqrt{x^{2}+(y-3)^{2}}=y \Rightarrow x^{2}+y^{2}-6 y+y=y^{2} \\
& x^{2}-6 y+9=0
\end{aligned}
$$

PII 10. Consider $P(x, y)$ moves such that the difference bet. $P A$ \& $P B$ equal 8 where $A(-5,0), B(5,0)$. Find locus of $P \rightarrow[$ ellipse eq $n]$
Ans:

$$
\begin{aligned}
& \text { Ans: } \\
& \sqrt{(x+5)^{2}+y^{2}}-\sqrt{(x-5)^{2}+y^{2}}=8 \rightarrow \sqrt{x^{2}+10 x+25+y^{2}}=8+\sqrt{x^{2}-10 x+25+y^{2}} \text { by squaring } \\
& \quad x-16=4 \sqrt{x^{2}-10 x+25+y^{2}} \text {, by squaring again }
\end{aligned}
$$

Then make abbriviation u get $x-16=4 \sqrt{x^{2}-10 x+25+y^{2}}$, by squaring again

$$
9 x^{2}+80 x-16 y^{2}-144=0
$$

Exercise (4) ch. 1 c, ole l: in

1. Find the distances bets:
(i) $\left(3,60^{\circ}\right)$ and $\left(5,150^{\circ}\right)$. (ii) $(6,30)$ and $(4,90)$
(iii) $(2,40)$ and $(4,100)$. (iv) $(22,30) / /(42,120)$

Ans. for two Points $P=\left(r_{1}, \theta_{1}\right)$ and $Q=\left(r_{2}, \theta_{2}\right)$. The length of $\overline{P Q}$ is $P Q=\sqrt{r_{1}^{2}+r_{2}^{2}-2 r_{1} r_{2} \cos \left(\theta_{1}-\theta_{2}\right)}$, then
(i) $P Q=\sqrt{9+25-30 \cos (90)} \Rightarrow P Q=\sqrt{34} *$ by/ Mohamed EMAM
(ii) $P Q=\sqrt{36+16-48 \cos (60)} \Rightarrow P Q=2 \sqrt{7}$;
(iii) $P Q=\sqrt{4+16-16 \cos (60)} \Rightarrow P Q=2 \sqrt{3}$
(iv) $P Q=\sqrt{4 a^{2}+16 a^{2}-162 \cos (90)} \Rightarrow P Q=2 \sqrt{5} 2$
2. Prove that the points $(0,0),\left(3,90^{\circ}\right)$ and $\left(3,30^{\circ}\right)$ form and equilateral triangle.
Ans.
$A B=\sqrt{0^{2}+3^{2}-2 * 0 * 3 \cos (90)} \Rightarrow A B=3$ by/ Mohamed EmIl $B C=\sqrt{3^{2}+3^{2}-2 * 3 * 3 \cos (60)} \Rightarrow B C=3$

$$
C A=\sqrt{0^{2}+3^{2}-2 * 0 * 3 \cos (30)} \Rightarrow C A=3
$$

$\because A B=B C=C A$, Then A, B and C are vertices of equilateral triangle.
3. Find the areas of the triangles with vertices:
i. $(2,60),(3,90)$ and $(4,120)$.
ii. $(-6,30),(4,90) / /\left(5,150^{\circ}\right) \cdot(6,210),(4,90) \&(5,150)$
iii. $\left(22,30^{\circ}\right),(42,60)$ // $(62,90)$.

Ans: The area of a triangle $A B C=\frac{1}{2}\left[r_{1} r_{2} \sin \left(\theta_{2}-\theta_{1}\right)+r_{2} r_{3} \sin \left(\theta_{3}-\theta_{2}\right)+r_{3} r_{1} \sin \left(\theta_{1}-\theta_{3}\right)\right]$
i. $A=\frac{1}{2}[2 \times 3 \sin (30)+3 * 4 \sin (30)+4 * 2 \sin (-60)] \Rightarrow A=1.036$ sq. unit
ii. $A=\frac{1}{2}[6 * 4 \sin (-120)+4 * 5 \sin (60)+5 * 6 \sin (60)] \Rightarrow A=11.26$ sq. Unit $*$
iii. $A=\frac{1}{2}[22 * 42 \sin (30)+42 * 62 \sin (30)+62 * 22 \sin (-60)] \Rightarrow A=2.804$ a 2 sq. unit
4. Transform into the corresponding polar coordinates:- Put $x=r \cos \theta$.

$$
y=r \sin \theta
$$

i. $3 x+y=0$

Ans.

$$
\begin{aligned}
& 3 r \cos \theta+r \sin \theta=0 \\
\therefore & 3 \cos \theta+\sin \theta=0 \Rightarrow \sin \theta=-3 \cos \theta \Rightarrow \tan \theta=-3 \Rightarrow \theta=288.43
\end{aligned}
$$

ii. $x^{2}+y^{2}=16$

Ans.

$$
r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta=16 \Rightarrow r^{2}\left[\cos ^{2} \theta+\sin ^{2} \theta\right]=16 \Rightarrow r^{2}=16 \Rightarrow r=4
$$

iii. $y^{2}=42 x$

Ans.

$$
r^{2} \sin ^{2} \theta=42 r \cos \theta \Rightarrow r \sin ^{2} \theta=42 \cos \theta
$$

$$
\text { iv. }\left(x^{2}+y^{2}\right)^{2}=2 z^{2} x y
$$

$$
\begin{aligned}
& \text { Ans. }\left(r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta\right)^{2}=22^{2} \cdot r^{2} \sin \theta \cdot \cos \theta \Rightarrow r^{4}=2^{2} r^{2} \sin (2 \theta) \\
& \therefore r^{2}=2^{2} \sin 2 \theta \\
& v \cdot x^{2}+y^{2}-2 x+2 y=0 \quad \text { by/ MoHamed EIMad }
\end{aligned}
$$

Ans.

$$
\begin{aligned}
& \underbrace{r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta}_{r^{2}}-2 r \cos \theta+2 r \sin \theta=0 \\
& r^{2}-2 r(\cos \theta+\sin \theta)=0 \Rightarrow r=2(\cos \theta+\sin \theta)
\end{aligned}
$$

5. Transform into the corresponding cartesian coordinates:

$$
\text { i. } r^{2}=2^{2} \cos 2 \theta \Rightarrow r^{2}=2^{2}\left[\cos ^{2} \theta-\sin ^{2} \theta\right]
$$

$$
\text { Put } v^{2}=x^{2}+y^{2} \text {. }
$$

$$
\tan \theta=\frac{y}{x}
$$

Ans.

$$
x^{2}+y^{2}=2^{2}\left[\frac{x^{2}}{x^{2}+y^{2}}-\frac{y^{2}}{x^{2}+y^{2}}\right] \Rightarrow\left(x^{2}+y^{2}\right)^{2}=2^{2}\left(x^{2}-y^{2}\right)
$$

ii. $r=8 \cos \theta$

Ans. But $r=\sqrt{x^{2}+y^{2}}, \tan \theta=\frac{y}{x}$

$$
\frac{\sqrt{x^{2}+y^{2}}}{x} \text { y } \Rightarrow \cos \theta=\frac{x}{\sqrt{x^{2}+y^{2}}}
$$

$$
\therefore r=8 \cos \theta \Rightarrow \sqrt{x^{2}+y^{2}}=\frac{8 x}{\sqrt{x^{2}+y^{2}}} \Rightarrow x^{2}-8 x+y^{2}=0
$$

Ans.

$$
\sqrt{x^{2}+y^{2}}=\frac{4}{1+\frac{x}{\sqrt{x^{2}+y^{2}}}} \Rightarrow \sqrt{x^{2}+y^{2}}=\frac{4 \sqrt{x^{2}+y^{2}}}{\sqrt{x^{2}+y^{2}}+x} \Rightarrow \sqrt{x^{2}+y^{2}}-x=4
$$

Exercise (5) Ch. $1 \leqslant$, $),$ s)

1. Change to a new origin in each case:
i. $x^{2}+y^{2}+2 x-4 y+1=0$; new origin $(-1,2)$.
ii. $x^{2}+2 y^{2}-6 x+16 y+39=0$; // // $(3,-4)$.

Ans. Put $x=x^{\prime}+h$ and $y=y^{\prime}+k$ for new origin (h, k).
i. $x^{2}+y^{2}+2 x-4 y+1=0$, put $x=x^{\prime}-1, y=y^{\prime}+2$, Then

$$
\begin{aligned}
& \left(x^{\prime}-1\right)^{2}+\left(y^{\prime}+2\right)^{2}+2\left(x^{\prime}-1\right)-4\left(y^{\prime}+2\right)+1=0 \\
& x^{\prime 2}-2 x^{\prime}+1+y^{\prime 2}+4 y^{\prime}+4+2 x^{\prime}-2-4 y^{\prime}-8+1=0
\end{aligned}
$$

Then: $\quad \sqrt{x^{\prime 2}+y^{\prime}-4}=0$
ii. $x^{2}+2 y^{2}-6 x+16 y+39=0$ Put $x=x^{\prime}+3, y=y^{\prime}-4$, then

$$
\begin{aligned}
& \left(x^{\prime}+3\right)^{2}+2\left(y^{\prime}-4\right)^{2}-6\left(x^{\prime}+3\right)+16\left(y^{\prime}-4\right)+39=0 \\
& x^{\prime 2}+6 x^{\prime}+9+2 y^{\prime 2}-16 y^{\prime}+32-6 x^{\prime}-18+16 y^{\prime}-64+39=0
\end{aligned}
$$

Then:

$$
\left\{x^{\prime^{2}}+2 y^{\prime 2}-2=0\right.
$$

2. Write down the er.ns for a rotation of axes by $\frac{\pi}{4}$, hence prove that the curve $2 x y=a^{2}$ can be transformed to $x^{2}-y^{2}=2^{2}$.

Ans.

$$
\left.\begin{array}{l}
x=x^{\prime} \cos \theta-y^{\prime} \sin \theta \\
y=x^{\prime} \sin \theta+y^{\prime} \cos \theta
\end{array}\right\} \begin{aligned}
& x=\frac{x^{\prime}}{\sqrt{2}}-\frac{y^{\prime}}{\sqrt{2}} \Rightarrow\left\{\begin{array}{l}
\sqrt{2} x=x^{\prime}-y^{\prime} \\
y=\frac{x^{\prime}}{\sqrt{2}}+\frac{y^{\prime}}{\sqrt{2}} \Rightarrow \sqrt{2} y=x^{\prime}+y^{\prime}
\end{array} \begin{array}{l}
\text { The ser } \\
\text { eq . ns }
\end{array}\right. \tag{1}\\
& \rightarrow \text { (1) }
\end{aligned}
$$

sub. with (1) in $2 x y=d^{2}$ where,

$$
\begin{aligned}
\sqrt{2} x \cdot \sqrt{2} y=2^{2} \Rightarrow & \left(x^{\prime}-y^{\prime}\right) \cdot\left(x^{\prime}+y^{\prime}\right)=a^{2} \Rightarrow \\
& \frac{x^{\prime 2}-y^{\prime 2}=2^{2}}{}+\frac{M \cdot 13}{2016} \\
& \text { by/ Motaammed Emad }
\end{aligned}
$$

3. Transform $x^{2}-6 x y+9 y^{2}+4 x+8 y+15=0$ to new axes through $(-2,1)$ rotated by $45:-0$
Ans. put $x=h+x^{\prime} \cos \theta-y^{\prime} \sin \theta \Rightarrow x=-2+\frac{x^{\prime}}{\sqrt{2}}-\frac{y^{\prime}}{\sqrt{2}}=-2+\frac{x^{\prime}-y^{\prime}}{\sqrt{2}}$,$y=k+x^{\prime} \sin \theta+y^{\prime} \cos \theta \Rightarrow y=1+\frac{x^{\prime}}{\sqrt{2}}+\frac{y^{\prime}}{\sqrt{2}}=1+\frac{x^{\prime}+y^{\prime}}{\sqrt{2}}$
sub. in the given eq. $-n$, Then
$\left(\frac{x^{\prime}-y^{\prime}}{\sqrt{2}}-2\right)^{2}-6\left(\frac{x^{\prime}-y^{\prime}}{\sqrt{2}}-2\right)\left(\frac{x^{\prime}+y^{\prime}}{\sqrt{2}}+1\right)+9\left(\frac{x^{\prime}+y^{\prime}}{\sqrt{2}}+1\right)^{2}+4\left(\frac{x^{\prime}-y^{\prime}}{\sqrt{2}}-2\right)+8\left(\frac{x^{\prime}+y^{\prime}}{\sqrt{2}}+1\right)+15=0 \rightarrow$ (1)
$\left(\frac{x^{\prime}-y^{\prime}}{\sqrt{2}}-2\right)^{2}=\frac{\left(x^{\prime}-y^{\prime}\right)^{2}}{2}-\frac{4}{\sqrt{2}}\left(x^{\prime}-y^{\prime}\right)+4=\frac{1}{2}\left(x^{\prime 2}-2 x^{\prime} y^{\prime}+y^{\prime 2}\right)+\frac{4}{\sqrt{2}} x^{\prime}+\frac{4}{\sqrt{2}} y^{\prime}+4$
$\left(\frac{x^{\prime}+y^{\prime}}{\sqrt{2}}+1\right)^{2}=\frac{\left(x^{\prime}+y^{\prime}\right)^{2}}{2}+\frac{2}{\sqrt{2}}\left(x^{\prime}+y^{\prime}\right)+1=\left(\frac{1}{2}\left(x^{x^{2}}+2 x^{\prime} y^{\prime}+y^{\prime 2}\right)+\frac{2}{\sqrt{2}} x^{\prime}+\frac{2}{\sqrt{2}} y^{\prime}+1\right)<$ ellis $\left(\frac{x^{\prime}-y^{\prime}}{\sqrt{2}}-2\right)\left(\frac{x^{\prime}+y^{\prime}}{\sqrt{2}}+1\right)=\left(\frac{x^{\prime} 2^{2}-y^{\prime 2}}{2}+\frac{x^{\prime}-y^{\prime}}{\sqrt{2}}-\frac{2}{\sqrt{2}}\left(x^{\prime}+y^{\prime}\right)-2\right) \Leftarrow \begin{gathered}9,200 \\ (-6) \ll\end{gathered}$
Then the eq.- (1) will be:
$x^{\prime}\left(\frac{1}{2}+\frac{9}{2}-\frac{6}{2}\right)+y^{\prime 2}\left(\frac{1}{2}+\frac{9}{2}+\frac{6}{2}\right)+x^{\prime} y^{\prime}(-1+9)+x^{\prime}\left(\frac{4}{\sqrt{2}}+\frac{8}{\sqrt{2}}-\frac{4}{\sqrt{2}}+\frac{18}{\sqrt{2}}-\frac{6}{\sqrt{2}}+\frac{12}{\sqrt{2}}\right)$
$+y^{\prime}\left(\frac{4}{\sqrt{2}}+\frac{6}{\sqrt{2}}+\frac{12}{\sqrt{2}}+\frac{18}{\sqrt{2}}-\frac{4}{\sqrt{2}}+\frac{8}{\sqrt{2}}\right)+(4+12+9+8-8+15)=0$
$\therefore \quad 2 x^{\prime 2}+8 y^{\prime 2}+16 \sqrt{2} x^{\prime}+22 \sqrt{2} y^{\prime}+40+8 x^{\prime} y^{\prime}=0$
or $\left\{x^{\prime 2}+4 y^{\prime 2}+4 x^{\prime} y^{\prime}+8 \sqrt{2} x^{\prime}+11 \sqrt{2} y^{\prime}+20=0\right\}$
4. Transform $3 x^{2}-24 x y+10 y^{2}+6 x+52 y=0$ to new origin $(3,1)$ and rotated by 45 .

Ans. Put $x=h+x^{\prime} \cos \theta-y^{\prime} \sin \theta \Rightarrow x=3+\frac{x^{\prime}-y^{\prime}}{\sqrt{2}} \Rightarrow x=\frac{x^{\prime}-y^{\prime}}{\sqrt{2}}+3$

$$
y=k+x^{\prime} \sin \theta+y^{\prime} \cos \theta \Rightarrow y=1+\frac{x^{\prime}+y^{\prime}}{\sqrt{2}} \Rightarrow y=\frac{x^{\prime}+y^{\prime}}{\sqrt{2}}+1
$$

$3 x^{2}=3\left(\frac{x^{\prime}-y^{\prime}}{\sqrt{2}}+3\right)^{2}=\frac{3}{2}\left(x^{\prime 2}-2 x^{\prime} y^{\prime}+y^{\prime 2}\right)+\frac{18}{\sqrt{2}}\left(x^{\prime}-y^{\prime}\right)+27$
$-24 x y=-24\left(\frac{x^{\prime}-y^{\prime}}{\sqrt{2}}+3\right)\left(\frac{x^{\prime}+y^{\prime}}{\sqrt{2}}+1\right)=-12\left(x^{x^{2}}-y^{\prime 2}\right)-\frac{24}{\sqrt{2}}\left(x^{\prime}-y^{\prime}\right)-\frac{72}{\sqrt{2}}\left(x^{\prime}+y^{\prime}\right)-72$
$10 y^{2}=10\left(\frac{x^{\prime}+y^{\prime}}{\sqrt{2}}+1\right)^{2}=5\left(x^{\prime 2}+2 x^{\prime} y^{\prime}+y^{\prime 2}\right)+\frac{10}{\sqrt{2}}\left(x^{\prime}+y^{\prime}\right)+10$
' $6 x=\frac{6}{\sqrt{2}}\left(x^{\prime}-y^{\prime}\right)+18$
' $52 y=\frac{52}{\sqrt{2}}\left(x^{\prime}+y^{\prime}\right)+52$, Then the given erin will be:
$x^{\prime^{2}}\left(\frac{3}{2}-12+5\right)+y^{\prime}\left(\frac{3}{2}+5+12\right)+x^{\prime} y^{\prime}(-3+10)+x^{\prime}\left(\frac{18}{\sqrt{2}}-\frac{24+72}{\sqrt{2}}+\frac{20}{\sqrt{2}}+\frac{6+52}{\sqrt{2}}\right)-$
$+\frac{y^{\prime}}{\sqrt{2}}(-18+24-72+20-6+52)^{3}+(27-72+10+18+52)=0$, or
$\frac{-11}{2} x^{\prime^{2}}+\frac{37}{2} y^{\prime 2}+7 x^{\prime} y^{\prime}+35=0 \Rightarrow 11 x^{\prime^{2}}-37 y^{\prime 2}-14 x^{\prime} y^{\prime}-70=0$
6. Find (h, k) for no $1^{\text {st }}$ degree terms for

$$
\text { iv. } 2 x^{2}+2 y^{2}-8 x+5=0
$$

Ans put $x=x^{\prime}+h, y=y^{\prime}+k$, Then

$$
\begin{aligned}
& 2 x^{2}+2 y^{2}-8 x+5=0, \\
& 2\left(x^{\prime}+h\right)^{2}+2\left(y^{\prime}+k\right)^{2}-8\left(x^{\prime}+h\right)+5=0 \text {, Then } \\
& 2 x^{\prime 2}+4 x^{\prime} h+2 h^{2}+2 y^{\prime 2}+4 k y^{\prime}+2 k^{2}-8 x^{\prime}-8 h+5=0
\end{aligned}
$$

or

$$
2 x^{\prime 2}+2 y^{\prime 2}+(4 h-8) x^{\prime}+(4 k) y^{\prime}+2 h^{2}+2 k^{2}-8 h+5=0
$$

for no $1^{\text {st }}$ degree terms put
$4 h-8=0 \Rightarrow h=2$ and $4 k=0 \Rightarrow k=0$. Then
$(2,0)$ is the point of new origin. Then the new eq.1 will be sub. with $(2,0)$ in 1 .

$$
2 x^{12}+2 y^{\prime 2}-3=0
$$

-

8. Find angle of rotation for no $x^{\prime} y^{\prime}$ term:
iii. $x^{2}-3 x y+4 y^{2}+7=0$

Ans.

$$
2 \alpha=\tan ^{-1}\left(\frac{B}{A-C}\right) \Rightarrow 2 \alpha=\tan ^{-1}\left(\frac{-3}{1-4}\right) \Rightarrow 2 \alpha=45 \Rightarrow \alpha=22.5
$$

$$
\text { i. } 3 x y+y-2=0
$$

Ans.

$$
2 \alpha=\tan ^{-1}\left(\frac{B}{A-C}\right)=\tan ^{-1}\left(\frac{3}{0-0}\right) \Rightarrow 2 \alpha=90 \Rightarrow \alpha=45
$$

$$
1 \operatorname{sn} 9
$$

$(\Leftrightarrow), C_{2016}^{3 n}=(\Leftrightarrow \hat{A}) \quad$ by/ Mohammad Emad

